
3. In der nachstehenden Arbeit von B i n g e l 8 

wird für die Lage des tiefsten angeregten Zustan-
des des Benzylradikals nach der Methode der Mole-
külbahnen ein Wert von —21300 c m - 1 und nach 
dem Modell der freien Elektronen der Wert von 
~ 2 1 800 cm - 1 errechnet. Nach der von uns getrof-
fenen Zuordnung entsprechen diese Zahlen dem 
experimentellen Wert ~ 2 2 3 3 0 cm - 1 . 

Die Übereinstimmung ist sehr befriedigend. Vor 
allen Dingen weist sie darauf hin, daß die um mehr 
als 9000 cm - 1 höher liegende Absorption von Por-
ter nur einem Übergang nach einem höher ange-
regten Zustand entsprechen kann. Außerdem er-
gibt die Theorie, daß der Absorptionsübergang 
zum tiefsten angeregten Zustand des Benzylradi-

kals eine relativ kleine Wahrscheinlichkeit hat. Sie 
zeigt auch, daß noch höher angeregte Zustände 
mit großer Übergangswahrscheinlichkeit existie-
ren. Dem Übergang zu einem solchen Term muß 
die Portersche Absorption entsprechen. Da Porter 
einen solchen starken Übergang bisher nur relativ 
schwach nachweist, ist es plausibel, daß sich der 
erste schwache Übergang bei 22330 c m - 1 der 
Beobachtung entzogen hat. 

Die in dieser Arbeit angestellten Betrachtungen 
lassen sich auch ganz analog auf andere aroma-
tische Substanzen ausdehnen. 

8 W. B inge l , Z. Naturforschg. 10a, 462 [1955]. 
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Es werden der Grundzustand und die ersten angeregten Elektronenzustände des Ben-
zylradikals mit der Methode der Valenzstrukturen, der Methode der Molekülbahnen und 
dem Modell der freien Elektronen berechnet. Die Ergebnisse dieser drei Methoden sind 
untereinander und mit den spektroskopischen Daten in qualitativer Übereinstimmung. 
Mit den beiden letzten Methoden werden die Elektronenstruktur des Benzylkations und 
-anions im Grundzustand und die ersten angeregten Zustände derselben bestimmt. 

In neuerer Zeit sind von verschiedener Seite 

Elektronenbandenspektren beobachtet worden, 
die dem Benzylradikal zugeordnet wurden1, 2. Es 
ist daher von Interesse, dieses Radikal theoretisch 
mit den Methoden der Quantenchemie zu behan-
deln. Die Elektronenstruktur des Grundzustandes 
wurde in der Literatur schon öfters diskutiert3. Die 
angeregten Zustände sind dagegen — so weit uns be-
kannt ist — noch nicht untersucht worden. Es ist 
daher der Hauptzweck dieser Arbeit, insbesondere 
im Hinblick auf die oben erwähnten spektroskopi-
schen Ergebnisse, eine Berechnung dieser angereg-
ten Zustände bezüglich ihrer energetischen Lage 
relativ zum Grundzustand, ihrer gruppentheoreti-
schen Klassifizierung sowie der Polarisation und 
Intensität der entsprechenden Elektronen-Über-
gänge durchzuführen. Da die zur Verfügung stehen-
den Rechenmethoden alle nur — mehr oder weni-

1 H. Schüler u. A. Michel , Z. Naturforschg. 10a, 
459 [1955], vorangehende Arbeit. 

2 G. Porter u. J. Norman, Nature, Lond. 174, 508 
[1954]. 

ger gute — Näherungsverfahren sind, werden wir 
die Rechnung sowohl mit der Methode der Valenz-
strukturen (in § 1), der Methode der Molekülbah-
nen (in § 2) als auch dem Modell der freien Elek-
tronen (in § 3) durchführen. Eine qualitative 
Übereinstimmung der Ergebnisse dieser drei Ver-
fahren ist dann trotz des approximativen Charak-
ters derselben eine Bestätigung der Zuverlässig-
keit dieser Ergebnisse. In § 4 werden wir die er-
haltenen Resultate dann untereinander und mit 
den spektroskopischen Daten vergleichen. 

§ 1. Die Methode der Valenzstrukturen 

Der Grundzustand des Benzylradikals ist f 
1933 von P a u l i n g und W h e l a n d behandeh 
den3a . Diese Autoren verwendeten die in Abb. 1 
dargestellten fünf kanonischen Strukturen für die 

3 a) L. Paul ing u. G. W. Whe land , J. Chem. 
Phys. 1, 362 [1933]: Resonanzenergie mit der Methode 
der Valenzstrukturen, b) W. G. Penney u. G. J. 
K y n c h , Proc. Roy. Soc., Lond. A 164, 409 [1938]: 
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Dublett-Terme des Benzylradikals. Mit diesen lau-
tet die Säkulardeterminante für die Gesamtener-
gie W 

A B E D c 
A 8/8 2/11 1/7 2/8 4/10 
B 2/11 8/8 4/10 2/8 1/7 
E 1/7 4/10 8/8 4/10 2/8 
D 2/8 2/8 4/10 8/8 4/10 
c 4/10 1/7 2/8 4/10 8/8 

( 1 ) 

A 

b c 

d 9 

Abb. 1. Die fünf nichtangeregten Strukturen des Ben-
zylradikals. Die obere Reihe gibt die Rumer-Dia-
gramme, die untere Reihe die entsprechenden Struk-
turen. x ist die Phantombahn4, mit der das jeweils un-
paarige TT-Elektron verknüpft wird. A und B entspre-
chen den zwei K£kul£-Strukturen des Benzols, das un-
paarige Elektron befindet sich bei dem Methylen C-
Atom g. In den Strukturen C, E bzw. D ist es in den 

Ring an die o- bzw. p-Position hereingewandert. 

Die Elemente dieser Determinante sind dabei 
m,\n == m (Q — W) + n-a, (2) 

wo W die Energie, Q das Coulomb-Integral und a 
das einfache Austauschintegral zwischen zwei be-
nachbarten TI-Atombahnen ist4. Die Bestimmung 
der Nullstellen von (1) läßt sich durch Ausnutzung 
der Symmetrien, die das Kohlenstoffgerüst des 

Z&fzj&fyz) 

Abb. 2. Koordinatensysteme und Symmetrieelemente 
des C-Gerüstes des Benzylradikals. Die Spiegelebene 
av (xz) ist die Papierebene, die Spiegelebene av (yz) steht 
senkrecht dazu und geht durch die in der z-Richtung 
liegende zweizählige Drehachse C2(z). x1, —xx und x2 
beziehen sich auf die Koordinatenwahl bei dem Mo-

dell der freien Elektronen. 

Benzylradikals besitzt, erleichtern. Wie Abb. 2 
zeigt, gehört das Benzylradikal zur Symmetrie-
gruppe C2V, deren Elemente C2(z) (zweizählige 
Drehachse), <7v(xz) und ov{yz) (Spiegelebenen) in 
dieser Abbildung angegeben sind. Die Charakteren-
tafel für C2v7 ist in Tab. 1 wiedergegeben. 

C2v / C2 (z) av (xz) av (yz) 
A, 1 1 L L 2 
A, 1 1 — L — L 

1 — 1 L — L X 

B2 1 — 1 — L L V 
/ ' (A . . E) 5 — 1 — 5 L 
r( a . . g ) 7 — 3 — 7 + 3 

Tab. 1. Die irreduziblen Darstellungen der Symmetriegruppe C2 

ihre Charaktere. 
und 

Da die 2 pjr-Atombahnen (AO's) a bis g von 
Abb. 1 und 2 antisymmetrisch zur Molekülebene 
cfv{xz) sind, und ferner in jeder Struktur sieben, 
also eine ungerade Zahl, solcher AO's vorkommen, 
sind alle Strukturen antisymmetrisch zu dieser 
Ebene. Die möglichen Molekülzustände müssen da-
her entweder zur irreduziblen Darstellung A2 oder 
B2 von Tab. 1 gehören. Sie sind dann antisym-
metrisch (A2) bzw. symmetrisch (B2) zur Spiegel-
ebene ov(yz). 

Durch die fünf Strukturen A bis E von Abb. 1 
wird eine reduzible Darstellung T von C2v indu-
ziert, deren Charaktere in der vorletzten Zeile von 
Tab. 1 angegeben sind und die sich gemäß (3) aus-
reduzieren läßt. 

r (A . . E) = 2 A2 -f 3 B2. (3) 

Man überzeugt sich leicht, daß die folgenden Li-
nearkombinationen bereits die richtige Symmetrie 
besitzen (die Multiplizität der Terme ist wie üblich 
durch den linken oberen Index gekennzeichnet): 

* T> <P3=D> 
2A2 : p 2 B 2 : ^ 4 = C + E, (4) 

" ? 2 = C - E , <p5 — A + B. 

Stellt man daher die Säkulardeterminante (1) mit 
diesen Funktionen auf, so zerfällt sie in zwei Stu-
fen, eine vom 2. Grade für die zu av{yz) antisym-

Atomabstände, berechnet mit den beiden ersten Me-
thoden. c) Disc. Faraday Soc. [1947]: Bindungsord-
nung und freie Valenz, berechnet mit den beiden ersten 
Methoden, d) C. A. Coulson, Proc. Roy. Soc., Lond. 
A 192, 16 [1947]: Die „nichtbindende" Molekülbahn 
und die Ji-Elektronenverteilung im Benzylkation und 
-anion mit der zweiten Methode, e) M. S. J. Dewar, 

Proc. Camb. Phil. Soc. 45, 638 [1949]: Die Säkular-
determinante für die zweite Methode. 

4 Für eine Erklärung der hier und im folgenden auf-
tretenden Größen und Begriffe siehe etwa5- 6. 

5 W. B inge l , Z. Naturforschg. 9a, 436 [1954]. 
6 W. B inge l , Z. Naturforschg. 9a, 824 [1954]. 
7 G. Herzberg , Molecular Spectra and Molecular 

Structure II, New York 1951, S. 106. 



metrischen (A2) und eine vom 3. Grade für die zu 
ffv{yz) symmetrischen (B2) Molekülzustände8. 

1 2 3 4 5 

1 12 / -6 6/6 0 0 0 
2 6/6 12/0 0 0 0 
3 0 0 8/8 8/20 4/16 
4 0 0 8/20 20/32 10/34 
5 0 0 4/16 10/34 20/38 

x1>2 = 1/3 ( 2 t V 1 ) (6b) 

(5) 

Setzt man die zu 2A2 gehörende Stufe gleich 
Null, so erhält man mit (2) und der Abkürzung 
x=(Q—E)l<x die quadratische Gleichung 

3 x2 — 4 x — 1 = 0 , also (6a) 
0,21525, 

+ 1,54858. 
Einsetzen dieser Werte in die Säkulargl. (7) 

(12 x — 6) C, +(6x +6) C2 = 0, (7) 
(6 £ + 6) + 12 xC2 = 0 

gibt dann das Verhältnis der Koeffizienten Cx und 
C2, mit denen die Symmetriefunktionen (px und cp2 

in die Molekülfunktion eingehen. Man erhält so 

V (12A2) = (A — B) + 1,82288 (C — E ) , 
W (12A2) - Q + 0,21525 a , (8a) 
W (22A2) = (A — B) - 0,82288 (C — E ) , 
W (22A2) - Q— 1,54858 a , (8 b) 

wo gemäß (4) noch die 99's durch die ursprüng-
lichen Valenzfunktionen A bis E ersetzt worden 
sind. Die ,,Hauptquantenzahl" vor dem Sym-
metriecharakter numeriert die nach wachsender 
Energie geordneten Terme gleicher Symmetrie. Da 
das Austauschintegral a negativ ist, hat (8a) die 
tiefere Energie. 

Nullsetzen der B2-Stufe von (5) führt nach eini-
ger Rechnung auf die kubische Gleichung 

a;3 + 1,8 a;2 — 1,8 # — 0,8 = 0. (9a) 

Die numerische Lösung derselben ergibt die Null-
stellen 

x1 = — 2,40929, x2 — — 0,347165, a;3 = + 0,956455. 
(9b) 

Zur Bestimmung der Koeffizienten C3, C4, C5 setzt 
man—da es ja nur auf die Verhältnisse ankommt — 
C 5 = l und hat, entsprechend zu (7), 

( 8 x + 8)C3 + (8 a; + 20) — — (4 a; + 1 6 ) , 
(8 x + 20) C3 + (20 a + 32) C4 = - (10 x + 34). (10) 

Einsetzen der Nullstellen (9 b) in (10) gibt dann, 
entsprechend zu (8), 

T (l2 Bz) = (A + B) + 0,63923 (C + E) + 0,60550 D, 
W(l2B2) = Q + 2,40929 a; ( I Ia ) 

W (22B2) = (A + B) — 0,55609 (C + E) — 0,96338 D, 
W (22B2) = Q + 0,347165 a; ( I I b ) 

W (32B2) = (A + B) — 3,7496 (C + E) —4,8577 D, 
W (32B2) = Q — 0,95645g a. (11c) 

Dabei ist (IIa) der Grundzustand des Benzylradi-
kals. Es ist von Interesse, ( I Ia) mit den Ergebnis-
sen von P a u l i n g und W h e l a n d 3 3 , zu verglei-
chen. Diese Autoren setzten zur Vereinfachung der 
Rechnung die Koeffizienten C4 und C5 einander 
gleich, wodurch an Stelle von (9a) eine quadra-
tische Gleichung für x tritt, und erhielten so 

W (12B2) = (A + B) + 0,62579 (C + D + E), 
W (12B2) = Q + 2,40914 a. ( I Ia ' ) 

Wie man sieht, wird durch diese Vereinfachung die 
Energie des Grund-Zustandes nur um l ,5-10 - 4|a| 
zu hoch bestimmt, was auch darin zum Ausdruck 
kommt, daß Ci und C5 in ( I Ia) angenähert gleich 
dem Koeffizienten in ( IIa ' ) sind. 

Bei Paul ing und Wheland steht für diesen Koef-
fizienten ein falscher Wert von 1,0279; die zweite Wur-
zel — 0,32 770, die bei Paul ing und W h e l a n d nicht 
angegeben ist, ist eine, allerdings wesentlich schlech-
tere Näherung für die zweite Wurzel x2 von (9 a) und 
damit für den ersten angeregten 2B2-Zustand. 

Für den in § 4 durchgeführten Vergleich der 
ersten Absorption bzw. Emission des Benzylradi-
kals mit denen des Benzols benötigen wir noch die 
Elektronenzustände des letzteren. Beschränkt man 
sich wie beim Benzylradikal auf nichtangeregte 
Strukturen, so ist3a>9 

V (1A lg) = 1 + 11, W (*A1g) = Q + 2,4 a, (12a) 
¥>eB2u) = I - I I , W(^Bta) = Qi (12b) 

wo I und II die beiden Kekule-Strukturen des 
Benzols sind; (12a) bzw. (12b) ist der Grundzu-
stand bzw. der erste angeregte Elektronenzu-

8 Der verwendete Satz von fünf Strukturen ist aller-
dings nicht vollständig. Hierzu müßte man noch wei-
tere acht einfach angeregte und eine zweifach angeregte 
Struktur berücksichtigen. Man nennt eine Struktur 
einfach bzw. zweifach angeregt, wenn sie eine bzw. 
zwei „lange" Bindungen besitzt, die drei Dewar-Struk-
turen des Benzols sind in dieser Bezeichnungsweise 

einfach angeregt. Die durch diese insgesamt vierzehn 
Strukturen induzierte Darstellung gibt ausreduziert 
5A 2+9B 2 , man hätte also je eine Gleichung fünften 
bzw. neunten Grades zu lösen. Aus diesem Grunde 
haben wir uns ebenso wie Paul ing und W h e l a n d 
auf die nichtangeregten Strukturen A bis E beschränkt. 

9 A. L. Sklar, J. Chem. Phys. 5, 669 [1937]. 



H.Schüler und A. M ich el, Über den spektroskopischen Nachweis des Benzyl- und <la Benzalradikals (C6H5CH2 und C6H-aCH) (S. 459). 

m i l l
 1 

\ 

1 . . IJil l l lJII 

J L I I I I I L 
§ 1(A) 

Abb. 1. Spektrum des Benzylradikals (V-Spektrum), beobachtet in der Entladung durch Toluoldampf. Aufgenommen 
mit Zeiss-Pörsterling-Spektrograph; / = 2 7 c m , 1 5 mA, 2 = 80 min. 

c6H5c-

J L 
m 

Abb. 2. a) Spektrum des Benzalradikals (C6H5CH), beobachtet in der Entladung durch Dibenzyldampf. Temperatur des Entla-
dungsraumes + 60°C. Aufgenommen mit dem mittleren Hilger-Quarzspektrographen; 1 — 7,5 mA, / = 15 min. Wesentlich schwächer 
sind die Spektren des Benzylradikals und des Toluols zu sehen, b) Vermutliches Spektrum des C6H5C-Radikals, beobachtet in der 

Entladung durch den Dampf des tertiären Butylbenzols. Temperatur des Entladungsraumes -f 250°C; 7 = 30 mA, <=10 min. 



W.Theis, Elektronenoptische Untersuchungen an Gelen (S. 503). 

Abb. 1. Vergr.: 10000:1 Sphärolith- und Stäbchen- Abb. 2. Vergr.: 10000:1 Selen. Nadel Wachstum, 
strukturen des Selens. 

Abb. 3. Vergr.: 10000: 1 Pflastersteinstruktur einer ge- Abb. 4. Vergr.: 30000:1 Plastisches Verhalten des 
temperten Selenoberfläche. Selens. 

Abb. 5. Vergr.: 4500: 1 Querschnitt eines 30//-Konden-
sats. Trägerplatte am unteren Rande des Bildes. 

(Nicht sichtbar.) 

Abb. 6. Vergr.: 10 000:1 Querschnitt eines 30 fi Kon-
densats. Trägerplatte am linken Rande des Bildes. 

(Nicht sichtbar.) 



stand des Benzols. Bei Mitnahme der drei einfach 
angeregten De war-Strukturen bleibt (12 b) un-
geändert, während die Energie des Grundzustan-
des (12a) jetzt $ + 2,6055 « beträgt, In Abb. 3 sind 
die Terme des Benzols und des Benzylradikals, wie 
sie sich mit der Methode der Valenzstrukturen er-
geben, wiedergegeben. Die erste Absorption des 
Benzols bei 38000 cm - 1 entspricht dem Übergang 
1B.,U •«-1Alg. Er ist als reiner Elektronenübergang 
verboten und wird erst durch Mitwirkung einer 
nichttotalsymmetrischen Schwingung erlaubt. Aus 
dieser Zahl und der theoretischen Energieände-
rung von 2,4 | a | errechnet man einen empirischen 
Wert von 15830 cm-1 für I a I. 

ii 
<3J|_ 

Benzol 
zweiKekule- alle fünf 
Strukturen Sfmkiuren 

Benzylradixal 
+1,5186 

+49566 

3% 

-0,3*72 

2ZA, 

-0.2153 

2,1, verb. zpossyert. 

-2,1 

Au •2.6055 
1

Alq 

2,0621, 

Abb. 3. Termschema des Benzols und des Benzylradi-
kals nach der Methode der Valenzstrukturen. Beim 
Benzol ist nur der erste angeregte Zustand eingezeich-
net. Die Zahlen an den Pfeilen geben die berechnete 
Energie des betreifenden Übergangs in Einheiten von 
| <x |. || und _]_ bedeuten zur Symmetrieachse C2(z) par-
allele bzw. senkrechte Polarisation des betreffenden 
Übergangs. Beim Benzol ist der erste Übergang ver-

boten. 

Die beiden ersten Absorptionen des Benzylradi-
kals sind nach Abb. 3 2 2 B 2 1 2 B 2 und 1 2 A 2 1 2 B 2 . 
Das direkte Produkt der Darstellungen des oberen 
und unteren Zustandes ist B 2 x B 2 = Ax bzw. 

B 2 x A 2 = B1. 

Dies gibt bekanntlich die Darstellung der Kompo-
nente des Dipolmoments, das mit dem betreffen-
den Übergang verknüpft ist. Die letzte Spalte von 
Tab. 1 zeigt, daß der langwelligste Übergang zur 
Z-Komponente des Übergangsmoments gehört, 
also parallel zur Symmetrieachse polarisiert ist. 
Der nächste Übergang gehört zur A-Komponente 
und ist daher senkrecht zur Symmetrieachse po-
larisiert. Nimmt man für | a | den gleichen Wert, 

wie er oben aus dem Benzolübergang ermittelt 
wurde, so sollten die beiden ersten Übergänge des 
Benzylradikals bei etwa 32600 bzw. 34600 cm- 1 

liegen, also relativ zum ersten Benzolübergang 
nach Rot verschoben sein. 

§ 2. Die Methode der Molekülbahnen 

Bei diesem Verfahren werden aus den n = 7 
2p t i—AO's yr (r = 1 . . .n), die in Abb. 2 mit a . . g 
bezeichnet worden sind, gewisse Linearkombina-
tionen xpi, eben die ,,Molekülbahnen" (MO's) ge-
bildet : 

Vi 2 CriXr-
r = 1 

(13) 

Die Koeffizienten Cri der r-ten AO in der i-ten MO 
bestimmen sich nach dem Variationsverfahren aus 
den Säkulargleichungen 

S CHß„ + cri (oLr—£,) = 0 (i,r = 1,2 . . . » ) , (14) 
(« * r) 

dabei ist die Nichtorthogonalität benachbarter 
AO's vernachlässigt worden. Die ar und ßrs sind 
Matrixelemente eines effektiven Einelektronen-
Hamilton-Operators h mit den AO's 
<xr — f x/ (1) h %r ( l ) d r x Einelektronen-Coulomb-
Integral, (15a, b) 
ßrs = J y * (1) h ys (1) d T-, Resonanzintegral; 

£f ist die Energie eines jr-Elektrons in der i-ten 
MO. Die Lösbarkeitsbedingung für das lineare, ho-
mogene Gleichungssystem (14) ist das Verschwin-
den der Säkulardeterminante: 

' ßl2 
tx, — e 

ßm 

= 0. (16) 

ßni ' ' ' «n-e 
Einsetzen einer der n Wurzeln £j von (16) in (14) 
gibt die Cri bis auf einen gemeinsamen Faktor, der 
durch die Normierung festgelegt werden kann: 

S C = 1, ( » = l , 2 . . . n ) . (17) 

Man vereinfacht (16) durch die für Kohlenwasser-
stoffe ohne Heteroatome gut zutreffenden Nähe-
rungen 

txr = ac für alle r, 
[ß für nächste Nachbaratome r, s, (18) 

ßrs = ' |o für Nichtnachbarn. 



Für das Benzylradikal nimmt (16) dann mit der 
Abkürzung ?/ = (ac—e)/ß die Form (19a) an: 

g d e f a b c 

g 2/ 1 
d 1 y 1 1 

? 1 \ l i = 0 . (19a) 
a 1 y 1 
b 1 2 / 1 
c 1 1 2 / 

Man kann zeigen, daß alle MO's zu einer irreduzi-
blen Darstellung der Symmetriegruppe des Mole-
küls gehören müssen. Welche irreduziblen Darstel-
lungen dabei auftreten, bestimmt man folgender-
maßen. Die sieben 2pjr—AO's a . . g bilden die 
Basis einer reduziblen Darstellung T, deren Cha-
rakterensystem in der letzten Zeile von Tab. 1 an-
gegeben ist. Ausreduzieren gibt10 

r (a . . . g) = 2a2 + 5b2. (20a) 

Da die MO's gemäß (14) Linearkombinationen von 
a . . . g sind, gibt es also zwei zu av(y, z) antisym-
metrische (a2, und fünf zu av (y , 2)) symmetrische 
(b2) MO's. Man kann von dieser Tatsache Gebrauch 
machen, indem man die Säkulardeterminante 
(19 a) mit den Symmetriefunktionen 

<px = b — f, cp2 = c — e (zu a2), (20 b) 

TS = g> VI = d> <PD = C + E> = B + F> <P = A (ZU b2) 

bildet11. Man erhält so an Stelle von (19 a) 
1 2 3 4 5 6 7 

1 22/ 2 0 
2 2 22/ 

4 I 1 2 — 0, (19b) 
5 0 2 2?/ 2 
6 2 22/ 2 
7 2 2/ 

also einmal (2 y)2—4 = 0 oder t/1>2 = ± 1. Das gibt 

10 Für die Symbole der irreduziblen Darstellungen 
von .E'in-Elektronenfunktionen pflegt man die ent-
sprechenden kleinen Buchstaben von Tab. 1 zu ver-
wenden. 

e(l&2) = ac + ß, a2) = ~ [b — f 4- c — e], 

(21a) 

e(2a2) = ac — ß, xp{2 a2) = y [— b + f + c — e], 

(21b) 

wobei die Koeffizienten CRI in der oben beschrie-
benen Form bestimmt wurden. Da das Resonanz-
integral ß ebenso wie das Austauschintegral a der 
Methode der Valenzstrukturen negativ ist, gehört 
(21a) zur tieferen Energie. 

Die zu b2 gehörende Stufe läßt sich durch mehr-
malige Anwendung des Ränderungssatzes für De-
terminanten leicht berechnen und führt auf 

4 « / ( i / 4 - 6y 2 + 7) = 0, also 
y = 0 und y= ± (3 ± ][2)V2 = ± 2,1010; ± 1,2599. 

(22) 

Für die Koeffizienten erhält man die leicht zu veri-
fizierende Beziehung 

N = (y2 - 3)2 (1 + y2) + 2 ((y2 - 2)2 + (y2 + 2)), 
([g], [d], [c + e], [b + f] , [d]) (23) 
= N-% {y2_3> _y[y2 _ 3 ) ) _ 2, y, 2), (y 4= 0), 

wo z.B. [g] der Koeffizient der AO g ist. 
Die durch Einsetzen der y{ von (22) in (23) er-

haltenen Koeffizienten sind, zusammen mit den 
aus (22) bestimmten Einelektronenenergien in 
Tab. 2 angegeben. Die ef sind, wie dies auch schon 
in (8), (11) und (21) geschehen ist, innerhalb einer 
irreduziblen Darstellung mit wachsender Energie 
durchlaufend numeriert, so daß 

e ( lb 2 ) < e (2b2) < . . . < £ (5b2) ist. 

11 Daß diese <j?'s tatsächlich die geforderte Sym-
metrie besitzen, macht man sich leicht an Hand von 
Tab. 1 und Abb. 2 unter Berücksichtigung der Anti-
symmetrie von a . . g bezüglich der Molekülebene 
o
v
(xz) klar. 

MO 
Energie Koeffizienten 

MO 
( e - «e)lß [g] [d] [c + e] [b + f ] [a] Norm.-Faktor 

Jb2 ±1/3 +JA 2 = ±2,1010 V2 ± F6 + 2 Y'2 (V 2 + 1) ± 1A ~ 3 + T 2 2 X [8 (3 + V"2)]"% 

± y 3 — lf2 = ± 1,2599 _ [ / 2 T l / 6 - 2 f 2 — (V 2 — 1) ± V 3 — f~i 2 x [8 (3 - V 2)]-% 
3 b2 0 = 0,0000 2 0 —1 0 1 x 7-Vi 

[g] [d] [c — e] [b — f ] [a] Norm.-Faktor A^/z 

oa2 ± 1 0 0 1 ± 1 O x l / 2 

Tab. 2. Energien und Koeffizienten der MO's des Benzylradikals. Die beiden a2-MO's von Gl. (21) sind im unteren 
Teil der Tabelle nochmals aufgeführt. 



Eine Betrachtung von Tab. 2 zeigt, daß die 
MO's in Paaren auftreten, deren beide Partner 
relativ zu der Energie ac einer isolierten 2 p T I — A O 
entgegengesetzt gleiche Energien und bis auf das 
Vorzeichen gleiche Koeffizienten haben. Ferner 
tritt eine ,,nichtbindende" MO1 2 der Energie Null 
auf, deren Koeffizienten für diejenigen AO's gleich 
Null sind, bei denen diese für die MO-Paare ent-
gegengesetztes Vorzeichen haben (ungesternte 
Atome, s. u.). Diese Eigenschaften gelten allge-
mein für jeden alternierenden Kohlenwasserstoff 
mit ungerader Zahl von C-Atomen13 . Alternierend 
heißt ein Kohlenwasserstoffmolekül dann, wenn 
sich seine C-Atome so in zwei Gruppen — eine ge-
sternte und eine ungesternte — einteilen lassen, 
daß jedes C-Atom aus einer Gruppe als nächste 
Nachbarn nur solche aus der anderen Gruppe hat. 
In diesem Fall sind die yr-Ladungsdichten qr 

qr = 2 ni Cri2 ini — Besetzungszahl der i-ten MO) (24 a) 

alle gleich 1. Die n-Bindungsordnungen prs (24 b) 
und die freien Valenzen Fr (24 c) sind schon früher 
angegeben worden30-4 : 

(24 b) 
i 

Fr = A m a x — 2 Prs a l I e nächsten Nachbarn von r. (24 c) 
s 

In Abb. 4 sind die MO-Energien e{ des Benzylradi-
kals nach Tab. 2 denen des Benzols gegenüberge-
stellt. Es sind dies die möglichen Energieniveaus 
für ein yr-Elektron im Feld des C-Gerüstes und 
aller anderen Jt-Elektronen. Die Gesamtenergie er-
gibt sich in der gleichen Näherung zu 

E = Z n i £ i , (24 d) 
i 

das heißt als Summe der Energien der besetzten 
MO's. Nach dem Pauli-Prinzip kann eine nicht-
entartete MO maximal 2 Elektronen aufneh-
men. Für den energetisch tiefsten Zustand ist dies 
in Abb. 4 dargestellt, die kleinen Kreise stellen die 
^-Elektronen dar. 

Beim Benzol erhält man so die Grundzustands-
konfiguration (a2u)2(e lg)4 1A1g. Die erste Anregung 
kommt durch den Übergang eines 7t-Elektrons ge-
mäß e2u-<-ejg zustande. Da die beiden beteiligten 

MO's je zweifach entartet sind, ist dieser Übergang 
mit der Anregungsenergie 2 | ß | vierfach entartet 
(das ist nur die Bahnentartung, die Spinentartung 
gibt einen weiteren Faktor 4). 

Bei Berücksichtigung der Elektronenwechsel-
wirkung14 — die durch die Terme e2/ri3- in der exak-
ten Hamilton-Funktion hervorgerufen wird — 
spaltet dieser vierfach entartete angeregte Zustand 
auf gemäß15 

(25) 2U
 c

l g 
=> = *B -4- XB 4- XE 

Diese drei Terme, von denen 1E l u noch zweifach 
entartet ist, entsprechen den drei bekannten Ab-
sorptionen des Benzols bei 38000, 48000 und 
54500 cm - 1 . Der Schwerpunkt dieser drei Terme 
liegt bei 48500 cm - 1 . Setzt man diese aus den ex-
perimentellen Daten gewonnene Zahl der theore-
tisch bestimmten Anregungsenergie nullter Nähe-
rung von 2 | ß | gleich, so erhält man 

| ß | = 24250 cm-1 . 

Die Elektronenkonfiguration des Benzylradikals 
im Grundzustand ist aus Abb. 4 zu entnehmen, sie 
ist (1 b2)2 (2 b2)2 (1 a2)2 3b 2 1 2B2. Die ersten angereg-
ten Zustände erhält man durch die in Abb. 4 mit 
Pfeilen markierten Elektronenübergänge, wobei 

r ^ ) 
- 2,0000 

-2 

Benzol 
2 

bzq 

e2u 

Benzylradikal 

+2.1010 • 
5b, 

1,2599 • 

coo / « 12599 • I 1,0000 

0 T ^ 
12599 7-000° 

-2 

a2u 

-1,2599 

-2,1010 

Abb. 4. Schema der MO-Energien beim Benzol und 
dem Benzylradikal. Die o geben die Besetzung der 
MO's mit Elektronen für den Grundzustand an. Ge-
mäß dem Pauli-Prinzip kann jede nichtentartete MO 
maximal zwei Elektronen aufnehmen. Beim Benzol 
sind die MO's bei ± ß zweifach entartet, der eingezeich-

nete Übergang ist also vierfach. 

12 Man bezeichnet eine MO mit der Energie 
si = txc — yiß = (xc + yi • | ß | 

als bindend (lockernd), wenn?/* < 0 ( > 0), als nichtbin-
dend für yi =0. 

13 C. A. Coulson u. H. C. L o n g u e t - H i g g i n s , 
Proc. Roy. Soc., Lond. A 192, 16 [1947]. 

14 M. Goeppert -Maier u. A. L. Sklar, J. Chem. 
Phys. 6, 645 [1938]. 

15 Die Spinentartung bedingt, daß jeder dieser drei 
Terme noch einmal als Triplett auftritt. 



3b2 -«- la2 und 2a2<-3b2 zur gleichen Anregungs-
energie von 1 | ß | gehören, also miteinander ent-
artet sind. Ebenso gehören 3b2^- 2b2 und 4b2+-3b2 

zur gleichen Anregungsenergie von 1,2599 | ß | und 
sind miteinander entartet. Durch Berücksichti-
gung der Elektronenwechselwirkung spalten die 
miteinander entarteten Zustände auf, so daß man 
die in Abb. 5 wiedergegebenen Terme des Benzyl-
radikals erhält. Zm Vergleich sind in Abb. 5 auch 
die oben besprochenen Terme des Benzols einge-
zeichnet. Die angegebenen Termbezeichnungen 
und Polarisationsrichtungen folgen aus 

2a, ^ 3 b 2 : . . . ( la2)22a2| 
3 b2 1 a 2 : . . . la 2 (3b 2 ) 2 = + 22A2 

B2 X A2 = Bx, also X-Polarisation; (26) 

4 b2 3 b2 

3 b9 2 b9 

. . . ( l a 2 ) 2 4 b 2 

2b2 (1 a2)2 (3b2 
= 22B0 + 32B9 

B2 x B2 = Aj, also Z-Polarisation. 
[cm-1] 

Die Aufspaltungen können aus dieser nullten 
Näherung natürlich nicht entnommen werden, wir 
werden sie im folgenden noch bestimmen. 

Nach der Methode der Molekülbahnen erwartet 
man also für das Benzylradikal vier langwellige 
Übergänge, von denen zwei senkrecht, und zwei 
parallel zur Symmetrieachse C2(z) polarisiert sind. 
Das Mittel aus den beiden senkrecht polarisierten 
Übergängen sollte bei der doppelten Wellenlänge wie 
der Schiverpunkt der drei ersten Benzolübergänge 
liegen. 

In diesem Zusammenhang ist eine Arbeit von 
D e w a r und L o n g u e t - H i g g i n s von Interesse16, 
in der die beobachteten langwelligsten Absorptio-
nen (die oc, p, ß und ß' -Banden von Clar) von alter-
nierenden Kohlenwasserstoffen und Kohlenwasser-
stoffradikalen mittels der Methode der Molekül-
bahnen mit teilweiser Berücksichtigung der Elek-
tronenwechselwirkung gedeutet werden. Insbe-
sondere zeigen diese Autoren für alternierende Ra-
dikale, daß durch Aufspaltung entstehende Terme 

Benzol 

51000 

18S00=2\ß I C 1sooo 

\3B000 

f* 0,63-
f=0,10 -

f= 0,002-

'E 1u 

?Ä 7 U 

7B. Zu 

Benzylradikal 

37100 
r 

30550= 1,2S99\ß\' 

27200 
21250= \ß\ 

verb. 

r= 0,07-
f- 0,38 

7 AI 9 

f« 0,11 

f= 0,11 

23700 
21300 

' 32B? 

•Z2A2 

•22B2 

-f<£0,76 
f=0,76 

7 2B, 

Benzyl-Ration o.> 
-anion 

30550=1,2599\ß\ 

21250= 1/31 % 

Abb. 5. Termschema des Benzols, des Benzylradikals und des Benzylkations bzw. -anions nach der Methode der 
Molekülbahnen. Die Zahlen an den Pfeilen bedeuten beim Benzol die beobachteten, beim Benzylradikal die be-

rechneten Oszillatorstärken /, bei den Benzoltermen handelt es sich um experimentelle Werte. 

16 M. J. S. Dewar u. IL C. L o n g u e t - H i g g i n s , Proc. Phys. Soc., Lond. A 67, 795 [1954]. 



wie 12A2, 22A2 und 22B2, 32B2 in (26) (siehe auch den 
mittleren Teil von Abb. 5) so beschaffen sind, daß 
der energetisch tiefere ein sehr kleines (in ihrer 
Näherung sogar Null), der energetisch höhere ein 
relativ viel größeres Übergangsmoment vom Grund-
zustand aus besitzt. 

Wir wollen die allgemeinen Formeln dieser Au-
toren benutzen, um für das Benzylradikal die 
Übergangsmomente und die beiden Aufspaltungen 
zu berechnen. Hierzu bildet man zunächst gemäß 
(26) die folgenden antisymmetrisierten Gesamt-
eigenfunktionen in der Form von Slater-Determi-
nanten: 

(1'2B2) = I 1 b2 Tb, 2b2 2h 21 a2 Ta^3b21, 
X l (2a2 3b2) = 11 b2 l b , 2 b 2 2b 2 1 a21 a2 2 a J , 
X2 (3b, 1 a2) = 11 b21 b 2 2 b 2 2 b 2 1 a2 3b2 3b21 

und entsprechend für ^1 (4b2 -^3b2 ) , ^2(3b2^-2a2) . 
Wie schon oben erwähnt, sind X\ u n d Xz Mitein-
ander entartet. Bei Berücksichtigung ihrer Wech-
selwirkung erhält man an ihrer Stelle die Funk-
tionen16 

^i , 2 = (Xl ± %2) zur Energie E = E»±y. (27) 
Dabei ist E° die ungestörte Energie, die nach dem 
oben Gesagten gleich 1 • | ß | für die A2-Terme und 
1,2599 | ß | für die B2-Terme ist. Das Abstoßungs-
integral y ist gegeben durch16 

y = — / / e ( l ) - ^ - e ( 2 ) d r 1 d r 2 , wo 
12 

q (1) = 2 * Cr (2a,) CT (3b , ) - x* (1) für die A2-Terme 
r 

und entsprechend für die B2-Terme. (28) 

Die Summation läuft dabei nur über die ge-
sternten AO's a, c, e und g, ihre Koeffizienten ent-
nimmt man aus Tab. 2. Man erhält so für die A2-
Terme 

e ( l ) = ^ r ( e 2 ( l ) - c 2 ( l ) ) , (29) 

1 1 
y = — (7ee + ?cc — 2 }'ec) = ~ ü (ttl ~ tts) • 

Dabei sind die Coulomb-Integrale yLlv definiert 
durch 

y^ = f fzM'W'r'Z"* ( 2 ) d T i d T 2 
12 

und hängen nur von dem Abstand der AO's ytt und 
Xv ab. Es ist also, wovon wir noch Gebrauch ma-
chen werden, 

17 J.A.Pop le, Proc. Phys. Soc., Lond. A68,81 [1955]. 
18 J. A. Pop le , Trans. Faraday Soc. 49, 1375 [1953]. 

7aa = ybb = • • • = yn = 1°'53 eV> 
yab ~ ybc = • • • — y\2 — 7,30 eV, (30) 
7ac = 7ce = • • • = 713 - 5> 4 6 eV> 
7ag = = 3,46 eV. 

Die numerischen Werte sind einer Arbeit von 
P o p l e 1 7 entnommen, mit Ausnahme von yag, das 
nach der Näherung der reziproken Abstände18 be-
rechnet wurde. Hiermit wird y(A2)=—0,362 eV 
=—2920 cm - 1 . Für die B2-Terme wird entspre-
chend 

1 
6 = V 56 -(3 —7 2 ) 
• {2 a2 (1) + ( f 2 - 1) (c2 (1) + e2 ( l ) ) - 2 f 2 g2 (1)}. 

f]insetzen in y gibt nach Zusammenfassen gleicher 
Glieder 

• ((18 - 4 V2) y u - 6 QT2 - 1 )2 y13 - 8 V2 ya g ) 
• = — 0,846 eV = — 6820 cm- 1 . 

Mit den so bestimmten Aufspaltungen sind in 
Abb. 5 die vier angeregten Terme des Benzylradi-
kals gezeichnet worden. Wir bemerken noch, daß 
für beide Symmetrien y< 0 ist, so daß die Funk-
tion Wx in (27) energetisch tiefer liegt als ihr Part-
ner W2. 

Wir wollen ferner noch die Oszillatorstärken 
der Elektronenübergänge im Benzylradikal vom 
Grundzustand 12B2 zu den vier angeregten Zu-
ständen berechnen. Die Oszillatorstärke 
eines Übergangs B A bestimmt sich aus dem 
Übergangsmoment (>B^A gemäß19 

8 m n2 c 
/B A = rB^A -|0B^_A|2 

J . . . J !Pb* ^ xiVAdTl...dTn. (31 a, b) 
i 

Dabei ist die Wellenzahl des Übergangs in 
cm - 1 , Wx und *PB sind die 6resam/-Eigenfunktionen 
des unteren und oberen Zustandes, und die Sum-
mation in (31b) ist über die Ortsvektoren r* aller 
Elektronen zu erstrecken. Der Koordinatenur-
sprung für die r̂  ist beliebig, sofern nur und W^ 
zueinander orthogonal sind20. Auf Grund der Aus-
wahlregeln (26) ist jeweils nur eine Komponente 
des Vektors Q von Null verschieden. 

19 R. S. Mul l iken, Rep. Progr. Phys. 8, 231 [1941]. 
20 H. Shull , J. Chem. Phys. 19, 1610 [1951]. 



Setzt man in (31b) die entsprechenden antisym-
metrisierten Gesamteigenfunktionen ein, so reduziert 
sich (j auf die folgenden Einelektronenübergangsmo-
mente für die A,-Terme: 

O,.o = — Q2 Z* Cr (2a^) Cr (3b2) • rr 

und entsprechend für die B2-Terme. Die Summation 
ist dabei wie in (28) nur über die „gesternten" AO's 
a, c, e und g zu erstrecken, rr ist der Ortsvektor des 
r-ten C-Atoms relativ zum Ursprung, als den wir das 
Atom a von Abb. 2 wählen. Mit den Koeffizienten Cr 
von Tab. 2 erhält man sofort 

1 
QltO = (̂ 2,0 = ^e ' 

Aus Abb. 2 ersieht man sofort, daß dies nur eine X-
Komponente von der Größe 

X — Y - - - 1 / I ^2,0- 2 |/ 7 

hat, a= 1,39 Ä ist der für alle C-Atome als gleich an-
genommene C—C-Abstand. Mit diesem Wert wird 
schließlich X1)0 =—A'2)0 =—0,4550 Ä. Einsetzen in 
(31a) gibt die Oszillatorstärke für die beiden mitein-
ander entarteten Übergänge 

/2a 2^3b 2=/3b 2^la a= 0,0710. (32a) 
Auf dem gleichen Wege erhält man für die beiden an-
deren Übergänge 

1 
Q 1,0 = - <Ao = j / 5 6 ( 3 _ K 3 ) 

• ((K 2 —l)(r c + rg) — 2 M~2xg). 
Dieses Moment hat in Übereinstimmung mit (26) nur 
eine Z-Komponente der Größe 

V 2 + 1 x Z, „=—Z20 = —-7 3 a = —1,068 A. 1,0 2'° V 56 (3 - y 3) 
Die Oszillatorstärke folgt dann aus (31 a) zu 

/4bs^3b2 — /3b2^-2b2 = 0,378. (32 b) 

Ohne Berücksichtigung der Elektronenwechsel-
wirkung haben also die beiden miteinander ent-
arteten Terme (A2 oder B2) entgegengesetzt gleiche 
Momente und gleich große Oszillatorstärken. Die 
Berücksichtigung der Wechselwirkung zwischen 
den entarteten Zuständen führt zu den Funktio-
nen (27). Offenbar ist nun wegen Q2,o ——Qi,o 

tQ(lPi,Xo)=f^(Qi,o+Q2,o) = ^ 

Q (^2. Xo) = (Quo - Qu>) = V 2 Quo 
und damit 

/ l 2 A j -

/2JA2-
/ 22B2 -

/ 32BS -

- 12B2 = 

- l 2 Bj = ^ /2a2 

-12B2 = 0, 
-22B. = 2 / 4b , 

-3b. 

-3b, 

= 0,14, 

0,76. 

(33a, b) 

Es ist anzunehmen, daß eine genauere Rechnung 
auch für 12A2 und 22B2 auf Kosten der 22A2- und 
32B2-Terme von Null verschiedene, wenn auch 
kleine Oszillatorstärken ergeben würde21. Die 
Summe der Oszillatorstärken für die A2- bzw. B2-
Terme muß jedoch ungeändert gleich 0,14 bzw. 
0,76 bleiben. Die so bestimmten /-Werte sind in 
Abb. 5 an die Pfeile für die entsprechenden Über-
gänge angeschrieben. Zum Vergleich sind dort beim 
Benzol die experimentell bestimmten /-Werte 
ebenfalls aufgenommen. 

In Absorption wird man also nur die folgenden 
Übergänge 

2 2A2 12B2 , v = 27 200 cm- 1 ; (33 c) 
3 2B2 -<- 12B2 , v = 37400 cm- 1 

stark sehen. Davon wird der letztere allerdings 
wohl von der ersten Toluolabsorption bei 38000 
cm - 1 überdeckt werden. 

Wir können hier auch gleich noch das Benzyl-
kation bzw. -anion mitbehandeln. Die MO's und 
ihre Energie sind natürlich die gleichen, wie beim 
Benzylradikal, da sich ja das Kohlenstoffgerüst 
nicht geändert hat. Was sich für den Grundzustand 
ändert, ist lediglich die Besetzungszahl n der nicht-
bindenden MO 3b2, die beim Benzylkation null, 
beim Anion zwei und beim Radikal eins beträgt. 

6/7 

Benzylkation 

Benzylanion 

1 Vi 
Abb. 6. Die ^r-Ladungsdichten qT von Gl. (34) im Ben-

zylkation und -anion. 

Da für das Radikal die Tr-Ladungsdichte gleich 
eins ist (s. o.), folgt hieraus sofort3 d , daß wegen 
der Definition (24 a) 

qr (Kation) = 1 — Cr2 (3 b2) und (34) 
qr (Anion) = 1 + Cr2 (3 b2), 

beide sind in Abb. 6 wiedergegeben. 

21 In Abb. 5 ist dies dadurch zum Ausdruck ge-
bracht, daß die /-Werte des jeweils schwächeren Über-
gangs mit /<^0,14 bzw. /<^0,76 angegeben sind. 



Dabei sind die Cr(3b2) die Koeffizienten der r-
ten AO in der nichtbindenden MO 3b2. Wegen des 
Verschwindens dieser Koeffizienten für die unge-
sternten C-Atome trägt diese MO nichts zur Bin-
dungsordnung (24 b) und damit auch nichts zur 
freien Valenz (24 c) bei. Diese Größen haben daher 
in den beiden Ionen die gleichen Werte wie im Ba-
dikal3d. 

Gemäß dem oben Gesagten ist die Elektronen-
konfiguration für den Grundzustand (lb2)2 (2b2)2 

(1 a2)2 für das Kation, (lb2)2 (2b2)2 (la2)2 (3b2)2 

1A1 für das Anion. Die ersten angeregten Zustände 
erhält man durch die Elektronenübergänge 

Kation: 3 b2 1 a2 = *BV 3B1 

3 b 2 2 b 2 = 1A1,3AX, 
Anion: 2a2 3b2 = 3BX 

(35) 

4b2 <- 3b2 = 1A1, 3A t . 
Die Art und Zahl der ersten angeregten Elektro-
nenzustände ist nach (35) für Kation und Anion 
die gleiche. Da die Anregung der beiden Triplett-
zustände vom Singulett-Grundzustand aus wegen 
des Interkombinationsverbots mit nur sehr ge-
ringer Intensität erfolgen kann, wird man daher 
bei Absorptions- oder Emissionsuntersuchungen 
nur die Übergänge 
*BX »A,, v > 24500 cm-1 , Polarisation X , 
1A1<-iA1, v> 30550 cm-1 , Polarisation Z (36) 
stark sehen. Ein Vergleich von (36) mit (33 c) zeigt, 
daß es unter Umständen schwierig sein wird, zwi-
schen diesen drei Möglichkeiten auf Grund spek-
troskopischer Daten allein zu unterscheiden. 

§ 3. Das Modell der freien Elektronen (FEM) 

Diese Methode nimmt an, daß sich die ^-Elek-
tronen frei in dem durch das Kohlenstoffgerüst von 
Abb. 2 gegebenen eindimensionalen und verzweig-
ten Räume bewegen können. Sie ist also eine An-
näherung an die zweite Methode, da sich die n-
Elektronen in einem konstanten Potential (das man 
zu Null normieren kann) bewegen sollen, während 
in jener — wenigstens im Prinzip — mit dem durch 
die einfach positiven C-Ionen und die restlichen 
jr-Elektronen erzeugten effektiven Potential ge-
rechnet wird. 

Die Lösungen der Schrödinger-Gleichung sind 
die einfachen Funktionen der schwingenden Saite 
(konstantes Potential!) 

xp (x) = A sin kx + B cos kx, (37 a) 

wo x der längs des C-Gerüstes von einem beliebigen 
Nullpunkt aus gerechnete Abstand ist; k ist die 
Wellenzahl, die mit der Energie e gemäß (37 b) zu-
sammenhängt (x — ka/n): 

2 m Hma2 •x2 = 1,5696 • 105 x2 [cm - 1] , 
(37 b) 

das letztere für einen C-C-Abstand von a — 1,39 A. 
Für den bei uns vorliegenden Fall von Verzwei-

gungen hat man für jeden Verzweigungspunkt P 
die folgenden Anschlußbedingungen zu erfüllen, 
die die Funktionen xp (xt) der in P zusammenlau-
fenden Zweige i miteinander verknüpfen: 

xp (Zj) |p = xp (x2) |p = . 
8 y> (x^ 

8 Xi = 0 . 

(38a, b) 
Um am Ende eines Seitenzweiges nicht identisch 
verschwindende Ladungsdichte zu bekommen, 
denkt man sich jeden Seitenzweig um einen C-C-
Abstand verlängert und setzt dann xp an diesem 
neuen Ende E gleich Null (in Abb. 2 ist dies durch 
die gestrichelte Fortsetzung über g hinaus zum 
Ausdruck gebracht): 

xp (x) |E = 0. (38c) 

Man kann nun so vorgehen, daß man für jeden 
Zweig i eine Lösung von der Form (37 a) ansetzt, 
die aus (38a—c) folgenden Gleichungen legen dann 
die Koeffizienten A{, bis auf einen gemeinsamen 
Faktor fest, außerdem erhält man eine transzen-
dente Gleichung für die Wellenzahl k, deren Lö-
sungen dann mit (37 b) die Energieniveaus e geben. 

Zur Beschreibung des Benzylradikals benötigen 
wir die in Abb. 2 eingezeichneten zwei Koordina-
ten xx und x2 (die Koordinate des dritten Zweiges 
ist —xx), für die Verzweigung P gilt dann x1 = 3a, 
x2 = 2a und für den Endpunkt E x2 = 0. Entspre-
chend dem oben Gesagten machen wir den Ansatz 

(39) 
fA sin kxj 

^ 1 \B COS KX X ' 

0 (antisymmetr. zu av (yz)) 
|C sin for2(symmetr. zu av {yz)). 

Hierbei sind gegenüber (37 a) die Endbedingung 
(38 c) und die Symmetrie bezüglich der Spiegel-
ebene av(yz) bereits berücksichtigt. Wir haben da-
her nur noch die Verzweigungsbedingung (38a, b) 
zu erfüllen. 



Ant i symmetr i s cher Fal l : 
Aus (38a) folgt A sin 3 ka = 0, (38b) ist identisch er-

füllt, also ist 
,(a) _ ka 

= y , n = 1,2 . . (40) 

Symmetr ischer Fal l : 
Aus (38 a, b) erhält man die Bedingungsgleichungen 

B cos 3 ka = C sin 2 ka, 
k (— 2 B sin 3 ka + C cos 2 ka) = 0. 

Eine Lösung dieser Gleichungen ist olfenbar 
xf = n + 1/2, n = 0,1 . . ., CB = 2 (— 1 )n. (41) 

Wenn wir diese Lösung im folgenden ausschließen, 
können wir die Bedingungsgleichungen umformen in 

B sin 2 ka 
2 tg 3 ka = cotg 2 ka, (42) 

Mit t = tg2ka läßt sich diese transzendente Gleichung 
auf die quadratische Gleichung 

lt2 — 1 6 f + l = 0, f = y ( 8 ± K 5 7 ) 

reduzieren. Hieraus erhält man wegen tg2 ka = t 
1 

sin ka = — 0,830407; 0,24581, 

x(s> = 
ka 

,n = 0 ,1, 2 

1) 
1)' 

(43) 

9 ± / 5 7 \ K 

6 / = 

jO,311892 + 2 n; —0,311892 + (2 n 
~n~ = \0,079055 + 2 n; — 0,079055 + (2 n 

B 1—0,94456 
~C { + 0,64832 

In Tab. 3 sind die ersten sieben Eigenwerte x 
nach (40), (41) und (43) zusammen mit den nach 
(37 b) berechneten Energien e wiedergegeben. Die 
Molekülbahnen des Modells der freien Elektronen 
(FEMO's) sind dabei — wie die MO's — mit den 
irreduziblen Darstellungen b, [symmetrisch zu 
av (yz)] und a2 [antisymmetrisch zu av (yz)] bezeich-
net, innerhalb jeder Gruppe sind sie mit wachsen-
der Energie durchlaufend numeriert. 

FEMO x(s) x(a) ( x ( s ) ) 2 ( x ( a ) ) 2 e [ c m - 1 ] 

1 b2 0,07905 0,00625 981 
2 b, 0,31189 0,09727 15 270 

1 a2 1/ 
/ 3 V, 17 440 

3 b2 0,5 0,25 39 240 
2 a2 7 3 

4 / / 9 69 760 
4 b, 0,68811 0,47350 74 320 
5 b2 0,92095 0,84815 133 100 

Sb, 

[CTTC1] 

Tab. 3. Die Energien der ersten sieben FEMO's. 

In Abb. 7 sind die ersten sieben FEMO's in 
einem Energieschema wiedergegeben, um sie mit 
der entsprechenden Darstellung der MO's in 
Abb. 4 (rechte Hälfte) vergleichen zu können. Die 
kleinen Kreise geben wieder die Besetzung der 

5-10 

FEMO's für den Grundzustand des Benzylradikals 
an. Bei einem Vergleich zwischen Abb. 4 (MO's) 
und Abb. 7 (FEMO's) sieht man, daß beide Me-
thoden in der Reihenfolge der Molekülbahnen völ-
lig übereinstimmen, auch die Abstände sind für die 
tieferliegenden Molekülbahnen ähnlich, für die 
höherliegenden gibt das Modell der freien Elektro-
nen größere Abstände als die Methode der Molekül-
bahnen. Das liegt daran, daß bei der letzteren die 
Anzahl der MO's endlich, nämlich gleich der Zahl 
n = l der zur Verfügung stehenden 2p7r-AO's ist, 

während die erstere un-
endlich viele FEMO's 
mit unbeschränkt wach-
sender Energie liefert. 
Aus diesem Grunde be-
schränkt man sich im 
allgemeinen auf die n 
ersten FEMO's, das sind 
gerade alle diejenigen, 
für die ka< n, also x< 1 
ist. 

Die in Abb. 7 einge-
zeichneten Pfeile stellen 
diejenigen Änderungen 
der Besetzungszahlen 
gegenüber dem Grund-
zustand dar, die zu den 
ersten vier angeregten 

Elektronenzuständen 
des Benzylradikals füh-
ren. Die beigeschriebe-
nen Zahlen geben die 
aus Tab. 3 erhaltenen 

Anregungsenergien in cm - 1 . In Abb. 8 sind diese 
angeregten Elektronenzustände des Benzylradikals 
zusammen mit dessen Grundzustand in einem 
Termschema für die nach (24 d) berechneten Ge-
sam^-Energien vereinigt, zusammen mit der Sym-
metriebezeichnung der Terme, der Polarisation 
und der Oszillatorstärke / (s. unten) der betreffen-
den Übergänge. 

Wie in § 2 so kann man auch hier das Benzyl-
kation bzw. -anion leicht mitbehandeln. Im Kation 
bzw. Anion ist die FEMO 3b2, die der „nichtbin-
denden" MO 3b2 von Abb. 4 entspricht, unbesetzt 
bzw. doppelt besetzt. Die ersten Übergänge sind 
wieder durch (35) gegeben. Im Gegensatz zur Me-
thode der Molekülbahnen geben dieselben für das 
Kation und Anion nicht mehr die gleiche Energie, 
da hier die symmetrische Lage der MO's relativ 

Abb. 7. Schema der 
FEMO-Energien im Ben-
zylradikal. Im übrigen vgl. 
die Unterschrift zu Abb. 4. 



zur nichtbindenden MO 3 b2 fortfällt. Die entspre-
chenden Energien lassen sich aus Tab. 3 entneh-
men. Sie wurden benutzt, um die in Abb. 8 eben-
falls wiedergegebenen Terme des Benzylkations 
bzw. -anions zu zeichnen. Wie in § 2 läßt sich auch 
hier die Singulett-Triplett-Aufspaltung nicht ohne 
weiteres berechnen. 

Schließlich wollen wir noch die Oszillatorstär-
ken / der langwelligsten Übergänge des Benzyl-
radikals mit dem Modell der freien Elektronen be-
rechnen. Für den bei uns vorliegenden speziellen 
Fall eines Radikals, bei dem im Grundzustand und 
in den betrachteten angeregten Zuständen alle 
FEMO's bis auf eine doppelt besetzt sind, verein-
facht (31 b) sich zu 

Q b-<-a J v>b* r Va ÜT. 

V, (3b2) = 

Vi (2 b,) = 

xp, (2 b2) 

~vT~ V2(3b2) = \ i a 2, a K7, 
— 1 

V, (-1 bo) 

K4,12085a 
1 

K3,67655 a 
— 1 

cos 0,31189 71 — , a 

sin 0,31189 n — , (45 a-

%(4b 2 ) = 

Vi, 12085a 
1 

\3,67655 a 

cos 0,68811 TI — , 

sin 0,68811 TI — . 

Die Absolutwerte der Koeffizienten A, B, C in (39) 
sind dabei durch die Normierungsbedingung 

J I V 
+ 3 a 

|2 dr = J | 
— 3a 

(44) festgelegt, aus der sich 

2 a 
2 dx, + J | 

0 
y,\2dx2=l (46) 

[cm 

3 

\ 

Benzylradikal 

3 5 0 8 0 .3*82 

30520 

f= 0,01 
r=o.o5-

23970 
21800 

Z2A, 

22BZ 
7 2AZ 

-f~Oß 

7 2ßo 

Benzylkation 

23970 
21800 

1 

\ 

'>47 
3Ai 
7B7 

Benzyl anion 

35080 

30520 

''A7 
3A1 % 
3B7 

Abb. 8. Termschema des Benzylradikals, des Benzylkations und -anions nach dem Modell der freien Elektronen. 
Die Zahlen an den Übergangspfeilen beim Benzylradikal sind die berechneten Oszillatorstärken. 

Das ist im Gegensatz zu (31 b) ein ü'iw-Elektronen-
integral, y>a und xpb sind die Einelektronenfunktio-
nen der im Grundzustand bzw. im angeregten Zu-
stand einjach besetzten FEMO's. Es entspricht dies 
dem Normalfall bei den Atomspektren, daß nur 
ein Leuchtelektron einen „Sprung" in eine andere 
Bahn vornimmt. 

Die benötigten und sind nach Abb. 7, Gl. (26) 
V(la2), y>{2a2), y>(2b2), y(3b2) und y(4b2). Aus (39) 
bis (43) erhalten wir hierfür 

Vi (i a2) = 7 ^ 7 s i n y ~ 7 T ' %( ia*) = °» 
1 2 n xx 

Vi (2 su) = sin — — , y>2 (2 a2) = 0, 

- i 2 - G ö = l, also A = (3 ff)"1/* für a2 und 

1 
— (B2- 6a + C2 • 2 ff) = 1, 2t 

Das Verhältnis BjC ist schon durch die Anschlußbe-
dingungen (38) bestimmt und in (41) und (43) ange-
geben. 

Für die beiden Übergänge 3b2<- 1 a2 und 2a2<- 3b2 
von Abb. 7 ist nach (26) nur die A-Komponente von 
(44) von Null verschieden und für 3b2 2 b., und 
4b 2 « -3b 2 nur die Z-Komponente. Aus Abb. 2 ent-
nimmt man leicht, daß folgendes gilt: 



Y ^ 

Z = — xx auf a b, 

Z = xx— — auf b c, (47; 

V3 1 A = (3 a — Xy), Z = —(a + xt) auf c d, 
LA Li 

x = o, Z = 4a — x2 auf dg E. 

Die Lage des Koordinatennullpunkts (in a) ist für 
die Berechnung des Übergangsmoments (38 c) belang-
los, wenn nur die yb zueinander orthogonal sind20, 
das ist bei uns der Fall. Mit (45) und (47) erhält man so 
für den Übergang 3b2«- la , 

A3 1 a2 = 2 J W (3 b2) X y, (1 a,) dz 
a b c d 
3 a 

2 P 71 Xy 71 Xy 
= —. I cos — - X - s i n — d.r,. (48) 

\3a-la ) 2 a 3 a 1 
o 

Dabei ist der Anteil des Weges dgE (siehe Abb. 2) 
gleich Null wegen (45a), das Stück afed gibt den glei-
chen Wert wie abcd und ist durch den Faktor 2 vor dem 
ersten Integral berücksichtigt. Zerlegen des zweiten 
Integrals in die drei den Abschnitten ab, bc und cd 
entsprechenden Anteile gibt wegen (47) mit £ = ;e,/a 

l 

12 r 7 ( 
0 

A3 b» 
71 71 

cos — | • £ • sin — £ d £ 

+ I cos — £ • sin — £ d £ (49) 

+ J cos — ^ • (3 — £) • sin — £ d £j. 
2 

Mit a = 1,39 A gibt die numerische Auswertung 
der Integrale X 3 b , , «_ i a 2 =—0,40303 A. Einsetzen 
dieses Wertes in (38a) gibt mit r 3 b = 2 1 8 0 0 
cm- 1 (Tab. 3), /3 b 2 «_ia2 = 0,038. Auf die gleiche 
Weise erhält man für den zweiten X-polarisierten 
Übergang /3 1&t = 0,047. 

Für die beiden Z-polarisierten Übergänge ist die Be-
rechnung der Oszillatorstärke wesentlich umständ-
licher, da jetzt auch die Strecke dgE beiträgt und die 
^'-Funktionen (45d, e) nichtrationale Koeffizienten 
und x-Werte haben. Man hat zunächst wieder 

^3b2«-2b2= 2 J y,y(3b2)-Z-rfy (2 b2) d t (50) 

+ J Vg(3 b2)-Z • y)2 (2 b2) d r — 
(lgE 

3 a 

Zerlegt man das erste Integral wie oben in seine drei 
Anteile, so erhält man mit £ = xja 

3̂b»-<—2b» = 
2 a 

K28,846 
71 £ 

cos — £•—-cos 0,31189 71 £d£ JL A 

j c o s y ) c o s O ' 3 1 1 8 0 7 r £ d £ 

+ I C O S y £ " •cos 0,31189 Jt! d £ 

+ 
2 a 

125 736 ] s i n Y ^ ( 4 - | ) sin0,31189 (51) 

Für eine grobe Abschätzung wurden diese Inte-
grale graphisch ausgewertet ; man erhält schließ-
lich /3 b2-<— 2 b2 ̂  0,3 und etwa den gleichen Wert für 
fi b2̂ — 3 b2- diese Werte wesentlich größer sind 
als für die X-polarisierten Übergänge, ergibt sich 
qualitativ schon daraus, daß zu ihnen das Stück 
dgE einen großen Beitrag liefert, nämlich das 
vierte Integral in (51), das bei den X-polarisierten 
Übergängen aus Symmetriegründen fehlen muß. 
Die so bestimmten /-Werte sind in Abb. 8 an die 
entsprechenden Übergänge angeschrieben. 

In Absorption sollte man nur die beiden starken 
Übergänge 

sehen. 

2 2B2 1 2 B 2 , v = 23990 cm- 1 , 
3 2B2 1 2B2, v = 35080 cm- 1 

§ 4. Diskussion 

(52) 

Alle drei Methoden stimmen darin überein, daß 
der Grundzustand ein 2B2-Term ist und daß die 
vier ersten angeregten Elektronenzustände je zwei 
2B2- und zwei 2A2-Terme sind. Die Methode der 
Molekülbahnen (Abb. 5) und das Modell der freien 
Elektronen (Abb. 8) stimmen auch noch in der 
Reihenfolge und der ungefähren energetischen 
Lage der angeregten Terme überein, während die 
Methode der Valenzstrukturen (Abb. 3) eine an-
dere Reihenfolge ergibt. Hierbei ist jedoch zu be-
achten, daß wir dort nur nichtangeregte Struktu-
ren berücksichtigt haben. Die Mitnahme der rest-
lichen neun angeregten Strukturen8 könnte dies 
sehr wohl ändern. 

Die Polarisation der Übergänge ist durch den 
Symmetriecharakter der angeregten Terme be-
stimmt und daher in allen drei Methoden die 
gleiche. 



Die Intensitäten bzw. die dazu proportionalen 
Oszillatorstärken konnten nur mit der Methode der 
Molekülbahnen und dem Modell der freien Elek-
tronen (Abb. 5 und 8) ermittelt werden. Bei einem 
Vergleich beider ist nun zu beachten, daß die in 
Abb. 5 und Abb. 8 angegebenen Terme sich in dem 
Grad der verwendeten Näherung unterscheiden. 
Bei der MO-Methode sind die A2- und B2-Terme 
miteinander entartet, wenn man die Elektronen-
wechselwirkung völlig vernachlässigt (nullte Nähe-
rung). In der gleichen Näherung sind diese Terme 
bei dem Modell der freien Elektronen bereits ge-
trennt. Ein Vergleich der Oszillatorstärken / nach 
diesen beiden Methoden in nullter Näherung zeigt 
nun eine recht gute Übereinstimmung derselben. 
Die beiden A2-Terme haben nach der MO-Methode 
beide ein / von 0,07, nach dem Modell der freien 
Elektronen /-Werte von 0,04 bzw. 0,05. Die beiden 
B2-Terme haben, wiederum in beiden Methoden, 
wesentlich größere Oszillatorstärken, nämlich 
/ = 0,38 nach der MO-Methode und f™ 0,3 nach 
dem Modell der freien Elektronen. 

Die teilweise Berücksichtigung der Elektronen-
wechselwirkung in der MO-Methode (erste Nähe-
rung) verändert diese /-Werte nun in der in § 2 be-
schriebenen Weise derart, daß der jeweils energe-
tisch höhere Term eines in nullter Näherung ent-
arteten Paares seine Oszillatorstärke auf Kosten 
seines energetisch tiefer liegenden Partners ver-
größert. Ob diese Änderung allerdings so weit geht, 
wie es durch (33) beschrieben wird, wo der tiefer 
liegende Term / = 0 und der höher liegende das 
doppelte des Wertes der nullten Näherung (32) hat, 
ist fraglich. Das wirkliche Verhalten dürfte wohl 
zwischen den durch Gl. (32) und (33) ausgedrück-
ten Tatbeständen liegen21. In dem Modell der 
freien Elektronen ist diese erste Näherung bis jetzt 
noch nicht durchführbar. Man wird jedoch in Ana-
logie zur MO-Methode erwarten, daß die Berück-
sichtigung der Elektronenwechselwirkung einen 
ähnlichen Einfluß auf die Oszillatorstärken haben 
wird. Allerdings dürfte derselbe hier geringer sein 
als in der MO-Methode, da ja die beiden Terme 
schon in nullter Näherung getrennt liegen. Die 
Berücksichtigung der Elektronenwechselwirkung 
wird daher z.B. eine geringere Beimischung von 
2 2A2 ZU 1 2A2 und umgekehrt verursachen als in 
der MO-Methode, wo dieselbe nach (27) 5 0 % be-
trägt. 

Schließlich wollen wir zum Abschluß noch die 
vorliegenden experimentellen Ergebnisse im Zu-

sammenhang mit unseren theoretischen Berech-
nungen besprechen. Wir werden uns dabei haupt-
sächlich auf die Ergebnisse der MO-Methode 
(Abb. 5) und des Modells der freien Elektronen 
(Abb. 8) stützen. 

In der vorstehenden Arbeit von S c h ü l e r und 
M i c h e l 1 sind zwei Elektronenspektren diskutiert, 
die dem Benzylradikal zugeordnet werden. Es ist 
dies einmal ein Emissions-Spektrum mit dem Ur-
sprung bei etwa 22330 cm - 1 , das von S c h ü l e r 
und R e i n e b e c k 2 2 in der positiven Säule einer 
Glimmentladung mit einer Mischung von Toluol 
(C6H5CH3) und Helium beobachtet und zunächst 
als V-Spektrum bezeichnet wurde. Das zweite 
Spektrum ist ein Absorptions-Spektrum mit sei-
nem Ursprung bei etwa 31 636 cm - 1 , das von P o r -
t e r 2 bei der Photolyse von Toluol gefunden wurde. 

In Abb. 3 der vorstehenden Arbeit1 sind diese 
Spektren auf Grund einer ausführlichen Diskus-
sion der experimentellen Befunde in ein Term-
schema eingezeichnet worden. Zum besseren Ver-
gleich mit den von uns erhaltenen Resultaten sei 
diese Figur als Abb. 9 hier nochmals wiederge-
geben. Der erste angeregte Zustand 12A2 in Abb. 5 
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Abb. 9. Experimentelles Termschema des Benzylradi-
kals aus der vorstehenden Arbeit1. Die Pfeile geben die 

beobachteten Übergänge an. 

(21300 cm"1) und Abb. 8 (21800 cm"1) stimmt be-
züglich seiner energetischen Lage mit dem ersten 
Term A von Abb. 9 (—22330 cm-1) recht gut über-
ein. Der zweite angeregte Term B von Abb. 9 

31636 cm - 1 ) wäre seiner energetischen Lage 
nach vielleicht mit den 2 2A2-Term von Fig. 5 und 8 
zu identifizieren. Diese Zuordnung wird gestützt 
durch eine Betrachtung der Oszillatorstärken. Die 
experimentellen Befunde verlangen offenbar, daß 
/B <~ x ^ /A x da man sonst den Übergang 
A « - X auch in Absorption hätte finden müssen. 
Dieses Verhalten wird nun auch für die obige Zu-
ordnung der experimentellen zu den theoretischen 
Termen von der MO-Methode richtig wiederge-
geben, wie die in Abb. 5 angegebenen berechneten 
Oszillatorstärken zeigen. Mit dem Modell der freien 

22 H. Schüler u. L. Re inebeck , Z. Naturforschg. 
6a, 160 [19541. 



Elektronen ergeben sich bei dieser Zuordnung in-
sofern Schwierigkeiten, als der dazwischenliegende 
22B2-Term im Gegensatz zu den Ergebnissen der 
MO-Methode eine recht große Oszillatorstärke von 

0,3 haben sollte, so daß er bei den Absorptions-
versuchen ebenfalls hätte gefunden werden müs-
sen. Hierbei ist jedoch zu beachten, daß die hier 
nicht berücksichtigte Elektronenwechselwirkung 
die Verteilung der Oszillatorstärken auf 2 2B2 und 
3 2B2 in der oben schon diskutierten Weise so ver-
ändert, daß /22BA <- I2B2 werden könnte. 
Der vierte berechnete Term 32B2 endlich hat zwar 

nach beiden Methoden eine sehr große Oszillator-
stärke, dürfte aber durch die erste Toluolabsorp-
tion bei 37500 cm - 1 überdeckt werden und daher 
nur schwierig experimentell zu finden sein. 

Die zufriedenstellende Übereinstimmung, die 
sich bei dem hier durchgeführten Vergleich zwi-
schen den verschiedenen Näherungs verfahren 
einerseits und zwischen denselben und den spek-
troskopischen Ergebnissen für das Benzylradikal 
andererseits ergibt, läßt erwarten, daß solche Be-
rechnungen auch für andere aromatische Radikale 
erfolgversprechend sind. 

Zur Theorie der magnetischen Sperrschicht in Halbleitern 
V o n 0 . MADELUNG, L . T E W O R D T u n d H . W E L K E R 

Aus dem Forschungslaboratorium der Siemens-Schuckertwerke AG, Erlangen 
(Z. Naturforschg. 10a, 476—488 [1955]; eingegangen am 31. März 1955) 

Im Anschluß an frühere Arbeiten1 wird die Theorie der magnetischen Sperrschicht in 
Eigenhalbleitern entwickelt und geschlossen dargestellt. Insbesondere wird die Dichte-
verteilung der Elektron-Loch-Paare unter dem Einfluß der gekreuzten Felder sowie die 
Strom-Spannungs-Kennlinie und ihre Abhängigkeit von den verschiedenen maßgebenden 
Größen wie Oberflächenrekombination und Dimensionierung der Probe untersucht. 
Schließlich werden Fragen wie Einfluß von Lichteinstrahlung, Frequenz verhalten, zeit-
licher Auf- und Abbau der Sperrschicht und die Erweiterungsmöglichkeiten der vorlie-
genden Theorie behandelt. 

1. Qualitatives Bild der magnetischen Sperrschicht 

Wir fassen noch einmal kurz die wichtigsten 
qualitativen Züge des hier betrachteten Ef-

fektes zusammen: 
Wird an einen Eigenhalbleiter ein elektrisches 

F'eld Ex und senkrecht dazu ein Magnetfeld Bz an-
gelegt, so werden durch die von den Feldern her-
vorgerufene Lorentz-Kraft Elektronen und Löcher 
in die gleiche Richtung abgelenkt. Ist in Ablen-
kungsrichtung infolge freier Oberflächen ein La-
dungstransport nicht möglich, so können trotzdem 
Teilchenströme von Elektronen und Löchern in 
dieser Richtung fließen; diese müssen aber gleich 
groß sein, so daß wegen des entgegengesetzten La-
dungsvorzeichens der Träger kein elektrischer 
Strom damit verbunden ist. Sind nun Volumen-
und Oberflächenrekombination der Halbleiter-
probe genügend klein, so werden sich beträchtliche 
Abweichungen der Elektron-Loch-Paardichte von 
ihrem Gleichgewichtswert ni einstellen, da sich an 

1 H. Welker , Z. Naturforschg. 6a, 184 [1951]; E. 
Weißhaar u. II. Welker , Z. Naturforschg. 8a. 681 
[1953]. 

der einen Oberfläche Paare stauen und von der 
anderen Oberfläche her dauernd Paare weggetrie-
ben werden. Dem dabei entstehenden Dichtegra-
dienten wirken zwei Effekte entgegen, die ihn aus-
zuglätten suchen: 

a) ein Diffusionsstrom, der in Richtung des nega-
tiven Dichtegradienten fließt, 

b) die Volumenrekombination von Elektronen und 
Löchern, die lokal die Dichteerhöhung bzw. 
-Verarmung abzubauen sucht. 

Die Randwerte der Dichteverteilung werden 
durch die Oberflächenrekombinationsgeschwindig-
keiten an den beiden freien Oberflächen bestimmt. 

Im stationären Fall halten sich also vier Effekte 
die Waage, die charakterisiert sind durch die Grö-
ßen BZEX (Lorentz-Kraft), D (Diffusionskonstante 
für Elektron-Loch-Paare), r (Volumenlebensdauer) 
und s (Oberflächenrekombinationsgeschwindig-
keit). Ferner ist maßgebend für die Dichtevertei-
lung die Dimensionierung der Halbleiter-Probe. Je 
nach Wahl der charakteristischen Parameter kann 
sich dabei eine (mittlere) negative Dichteabwei-
chung von nt einstellen (Widerstandsvergröße-


